Comparison between the article and script of thesis

All nanomaterials and a part of results presented and discussed in this article titled 'Efficient multi-metallic anode catalysts in a PEM water electrolyzer' provide from the script of thesis titled: "Synthèse et caractérisation de matériaux électrocatalytiques pour l'activation de la molécule d'eau: application dans une anode d'électrolyseur de type PEM". This script of thesis is written by Mamaca Nurcan and defended 4 November 2011 in order to obain a PhD degree in chemistry.

1) The experimental part presented in article was detailed in scipt of thesis.

a) Synthesis of nanomaterials

Article	'The Ru, Ir, Sn and Ti polymeric precursors (metal–resin) were separately prepared by mixing citric acid (CA) (Sigma Aldrich) in ethylene glycol (EG) (Sigma Aldrich) at 60–65 °C. Previously, the precursor salt RuCl ₃ ·xH ₂ O (Sigma–Aldrich) was dissolved in an acidic solution (HCl/H ₂ O 1:1, v/v) then it was added slowly at a molar ratio of 1:4:16 of CA/EG/metal. After total dissolution of the precursor salt, the temperature was raised to 90 °C and kept at this level for 2–3 h, under vigorous stirring. In a similar way iridium, tin and titanium resins were prepared with the same ratio from IrCl ₃ ·xH ₂ O (Sigma Aldrich), SnCl ₂ ·xH ₂ O (Alfa Aesa), and Ti[OCH(CH ₃) ₂] ₄ (Sigma Aldrich). However, the tin and titanium salts did not require the preliminary dissolution in a hydrocloric acid solution. Then different desired catalysts were prepared from a mixture of different compositions required for the resins of ruthenium, iridium and Ti or Sn.'
Script of thesis p30-31-32	La résine de ruthénium Une estérification a préalablement été réalisée dans un bécher à 60 °C à partir d'un mélange d'acide citrique (AC) et d'éthylène glycol (EG). Ensuite, le sel métallique RuCl ₃ , xH ₂ O (Sigma Aldrich) est dissout dans un autre bécher avec un mélange H ₂ O-HCl dans un rapport volumique (1:1). Cette solution métallique est lentement ajoutée au bécher contenant l'ester, toujours à la température constante de 60 °C et sous agitation mécanique. Lorsque la solution de rapport molaire AC/EG/RuCl ₃ 4:16:1 devient homogène, la température du bécher est alors portée à 90 °C pour permettre la polymérisation de l'ester. Le mélange est maintenu à cette température et sous agitation vigoureuse jusqu'à l'obtention d'une résine de consistance visqueuse. La résine d'iridium La synthèse de la résine d'iridium est faite par la même procédure que pour le ruthénium. Les mêmes rapports molaires (AC/EG/sel métallique 4:16:1) sont utilisés et le sel métallique précurseur utilisé est IrCl ₈ , xH ₂ O (Sigma Aldrich). La résine est également obtenue à 90 °C lorsqu'une consistance visqueuse est atteinte.

La résine d'étain

La synthèse de la résine d'étain se déroule en plusieurs étapes : du citrate d'étain est préparé en dissolvant du chlorure d'étain dans un mélange d'acide citrique et d'eau ; puis le pH de la solution est porté à 3 en ajoutant goutte à goutte une solution ammoniacale (NH₄OH). La solution est ensuite filtrée et séchée à l'étuve. Le citrate d'étain obtenu est ajouté au mélange d'acide citrique et d'éthylène glycol, préalablement dissous pour former l'ester. Une température constante de 60 °C et une agitation vigoureuse permet de dissoudre totalement le citrate dans l'ester. La solution obtenue, de ratio molaire AC/EG/citrate d'étain 3:10:1, est ensuite portée, sous agitation vigoureuse, à 90 °C, température à laquelle a lieu la formation d'une résine polymérique d'étain.

Les résines de tantale et de titane

Les résines polymériques de tantale et de titane ont été préparées de la même manière que celle de niobium et ce, en respectant les deux étapes d'estérification à 60°C et de polymérisation à 90 °C sous agitation constante et vigoureuse. Les sels métalliques de Ta et Ti appropriés¹ à cette méthode de synthèse sont respectivement $Ta(OC_2H_5)_5$ et Ti[OCH(CH₃)₂]₄ de chez Sigma Aldrich et les ratios molaires sont de (AC/EG/Ta(OC₂H₅)₅ 5:25:1 et AC/EG/Ti[OCH(CH₃)₂]₄ 4:16:1.

Molar ratio was presented in the folowing table (citric acide/ethylen glycol/metallic salt):

Précurseur métallique (fournisseur) :	Ratio molaire
RuCl ₃ xH ₂ O (Sigma Aldrich)	4/16/1
IrCI ₃ xH ₂ O (Sigma Aldrich)	4/16/1
Ti[OCH(CH ₃) ₂] ₄ (Sigma Aldrich)	4/16/1
NH ₄ [NbO(C ₂ O ₄) ₂ .H ₂ O] (CBMM)	4/16/1
(Companhia Brasileira de Metalurgia e Mineração)	
Ta(OC ₂ H ₅) ₅ (Sigma Aldrich)	5/25/1
SnCl ₂ xH ₂ O (Alfa Aesar)	3/10/1

Tableau 3 : Précurseurs métalliques utilisés pour la synthèse des catalyseurs anodiques selon la méthode Pechini-Adams

b) Heat treatment

c) Preparation of the catalytic ink

Article	'The obtained catalytic powders were used to prepare the different catalytic anodes. The powder (4 mg) was dispersed in a solution (839 μ L) containing water (725 μ L) and a Nafion [®] solution (114 μ L) (5 wt.% in aliphatic alcohol, Aldrich). The resulting ink was ultrasonically homogenized for few hours. For each electrochemical experiment 30 μ L of the ink were deposited onto a slab of gold (1 cm ²) to serve as supporting substrate of the working electrode; the catalytic ink was then dried under nitrogen (U quality, from Air Liquide company). This ultrasonical homogenization step is very sensitive because it enables to avoid sedimentation of metallic particles in the ink, involving thereby nonrepeatable experiments.'
Script of thesis p 37	 d. Préparation de l'électrode de travail Les matériaux préparés par les deux méthodes de synthèse envisagées dans ce travail sont sous forme de poudre. Pour réaliser les mesures électrochimiques, une encre catalytique a été préparée. Dans un premier temps, la poudre est finement broyée à l'aide d'une spatule en Téflon, puis 4 mg du catalyseur est ajouté à un mélange d'eau et de Nafion[®] (114 µL de Nafion[®] et 725 µL d'eau). Le mélange ainsi obtenu est homogénéisé au bain à ultrasons. L'homogénéité de l'encre est un paramètre important permettant d'assurer la reproductibilité des tests. Dans un second temps, une quantité de 15 µL est déposée sur une électrode d'or d'une surface géométrique de 0,196 cm². L'encre catalytique est séchée sous atmosphère d'azote à température ambiante ou à l'étuve à 70 °C.

d) Electrochemical measurements

Article	'All the solutions used in this work were prepared with 18.2 MΩ cm water produced at 20 °C and purified by a Millipore-Milli-Q system. The Nafion [®] membranes utilized in the Membrane Electrode Assemblies (MEAs) of the PEMWE cell contain sulfonic acid groups which are equivalent to 0.5 mol L ⁻¹ H ₂ SO ₄ . For this reason, all the voltammetry experiments were carried out in 0.5 mol L ⁻¹ H ₂ SO ₄ (Merck) as supporting electrolyte. The latter measurements were performed in a conventional three-electrode electrochemical glass cell (20 mL) using Radiometer Analytical (PGZ 402) potentiostat Electrochemical Interface. A Reversible Hydrogen Electrode (RHE) and a slab of vitreous carbon (8 cm ²) electrically connected with a gold wire served as reference and counter electrodes, respectively. The working electrode was composed of the catalytic ink made from the suitable mixture of a powder of the Ru based material, a Nafion [®] 5 wt.% solution and water. This catalytic ink (0.38 mg cm ⁻²) was then deposited at the surface of a gold substrate as conductive carrier.'
Script of thesis p 36	Les mesures électrochimiques ont été réalisées dans une cellule monocompartimentée en monocompartimentée en Pyrex. Comme l'indique la Figure 8, la cellule est composée d'une électrode de référence, d'une contre- électrode et d'une électrode de travail. Les réactions électrochimiques sont observées à la surface de l'électrode de travail, laquelle est composée d'un embout d'or de 5 mm de diamètre sertie dans un embout en Téflon. Une autre configuration d'électrode de travail a également été utilisée, il s'agit d'une plaque rectangulaire de 1 cm * 0,5 cm d'or (une surface géométrique de 1 cm ² et sur les 2 côtés). L'encre catalytique est déposée sur les deux côtés de l'électrode de travail. La cellule se compose également d'une contre-électrode en carbone vitreux présentant une grande surface spécifique de 5 cm ² . La troisième électrode est une électrode de référence à hydrogène. Cette électrochimiques sont réalisés. Elle est compatible avec les électrolytes utilisés et stable sur de longues durées d'utilisation. Le pont de Luggin assure la conduction ionique permettant la mesure du potentiel de l'électrode de travail par rapport à l'électrode de référence (ERH). Pour finir, le système de dégazage est constitué d'un dégazeur et d'un bulleur, afin de travailler en atmosphère contrôlée et inerte. Pour tous les tests réalisés en cellule électrochimique, le gaz utilisé pour la désaération est le diazote.

2) Results and discussions

a) Cyclic voltammograms

b) BET measurement

Unit is modified

Article	The BET measurements of the materials gave 102.5, 142 and 372 cm ² mg ⁻¹ as respective specific surfaces of the $Ru_{0.85}Ir_{0.05}Ti_{0.1}O_2$, $Ru_{0.85}Ir_{0.05}Sn_{0.1}O_2$ and $Ru_{0.9}Ir_{0.1}O_2$ anodes		
	Catalyseurs	Surface spécifique (m²/g)	
	IrO ₂	6,12	
Scipt of thesis	RuO ₂	26,28	
P 70	Ru _{0,90} Ir _{0,10} O ₂	37,16	
	Ru _{0,80} Ir _{0,20} O ₂	44,97	
	Ru _{0,70} Ir _{0,30} O ₂	76,92	
	Ru _{0,85} Ir _{0,05} Ti _{0,10} O ₂	10,25	
	Ru _{0,85} Ir _{0,10} Sn _{0,05} O ₂	14,18	
	Tableau 13: Résultats des surfa	ces spécifiques des différents catalyseurs obte	nus par BET.

c) Capacitance measurement

Unit is modified

Article	When measuring the specific capacitances of the materials in the potential window 0.5–1 V vs. RHE the values of 8.6, 20.8 and 33 F $g^{-1}_{noble metal}$ are obtained for Ru _{0.85} Ir _{0.05} Sn _{0.1} O ₂ , Ru _{0.85} Ir _{0.05} Ti _{0.1} O ₂ and Ru _{0.9} Ir _{0.1} O ₂	
Script of thesis p 100	Matériau	Capacitance (mF.cm ⁻²)
	Ru _{0,90} Ir _{0,10} O ₂	8,53
	Ru _{0,85} Ir _{0,05} Ti _{0,10} O ₂	4,06
	Ru _{0,85} Ir _{0,10} Sn _{0,05} O ₂	3,62
	Ru _{0,85} Ir _{0,05} Ta _{0,10} O ₂	1,35
	Ru _{0,85} Ir _{0,05} Nb _{0,10} O ₂	1,24